A force acts on a block as shown in figure. Find time when block loses contact with surface.
$t = 25/3 \, \sec$
$t = 50/3 \, \sec$
$t = 100/3 \, \sec$
$t = 50 \, \sec$
The coefficient of static friction, $\mu _s$ between block $A$ of mass $2\,kg$ and the table as shown in the figure is $0.2$. What would be the maximum mass value of block $B$ so that the two blocks $B$ so that the two blocks do not move? The string and the pulley are assumed to be smooth and masseless ....... $kg$ $(g = 10\,m/s^2)$
A rectangular block has a square base measuring $a \times a$ and its height is $h$. It moves on a horizontal surface in a direction perpendicular to one of the edges. The coefficient of friction is $\mu$. It will topple if
A truck starting from rest moves with an acceleration of $5 m/s^2$ for $1 sec$ and then moves with constant velocity. The velocity $w.r.t$ ground $v/s$ time graph for block in truck is ( Assume that block does not fall off the truck)
A block of mass $M$ is being pulled along rough horizontal surface. The coefficient of friction between the block and the surface is $\mu $. If another block of mass $M/2$ is placed on the block and it is again pulled on the surface, the coefficient of friction between the block and the surface will be
A force of $98\, N$ is required to just start moving a body of mass $100\, kg$ over ice. The coefficient of static friction is